A Genome-Wide Association Study Provides New Evidence That CACNA1C Gene is Associated With Diabetic Cataract
نویسندگان
چکیده
PURPOSE Diabetic cataract is one of the major eye complications of diabetes. It was reported that cataract occurs two to five times more frequently in patients with diabetes compared with those with no diabetes. The purpose of this study was to identify genetic contributors of diabetic cataract based on a genome-wide association approach using a well-defined Scottish diabetic cohort. METHODS We adapted linked e-health records to define diabetic cataract. A diabetic cataract case in this study was defined as a type 2 diabetic patient who has ever been recorded in the linked e-health records to have cataracts in both eyes or who had previous cataract extraction surgeries in at least one eye. A control in this study was defined as a type 2 diabetic individual who has never been diagnosed as cataract in the linked e-health records and had no history of cataract surgeries. A standard genome-wide association approach was applied. RESULTS Overall, we have 2341 diabetic cataract cases and 2878 controls in the genetics of diabetes audit and research in Tayside Scotland (GoDARTS) dataset. We found that the P value of rs2283290 in the CACNA1C gene was 8.81 × 10(-10), which has reached genome-wide significance. We also identified that the blood calcium level was statistically different between diabetic cataract cases and controls. CONCLUSIONS We identified supporting evidence that CACNA1C gene is associated with diabetic cataract. The role of calcium in the cataractogenesis needs to be reevaluated in future studies.
منابع مشابه
Genome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملCalcium Signaling Pathway Genes RUNX2 and CACNA1C Are Associated With Calcific Aortic Valve Disease.
BACKGROUND Calcific aortic valve stenosis (AS) is a life-threatening disease with no medical therapy. The genetic architecture of AS remains elusive. This study combines genome-wide association studies, gene expression, and expression quantitative trait loci mapping in human valve tissues to identify susceptibility genes of AS. METHODS AND RESULTS A meta-analysis was performed combining the r...
متن کاملAnalysis of ANK3 and CACNA1C variants identified in bipolar disorder whole genome sequence data
OBJECTIVES Genetic markers in the genes encoding ankyrin 3 (ANK3) and the α-calcium channel subunit (CACNA1C) are associated with bipolar disorder (BP). The associated variants in the CACNA1C gene are mainly within intron 3 of the gene. ANK3 BP-associated variants are in two distinct clusters at the ends of the gene, indicating disease allele heterogeneity. METHODS In order to screen both cod...
متن کاملWhat is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review.
The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its t...
متن کاملIndependent modulation of engagement and connectivity of the facial network during affect processing by CACNA1C and ANK3 risk genes for bipolar disorder.
IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate γ-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and...
متن کامل